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1.     INTRODUCTION 

In recent papers [1-3], particular solutions of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [4-7] evolution 

equations for t and x-evolutions of singlet and non-singlet structure functions in leading order (LO) and next-to-leading 

order (NLO) at low-x have been reported. In this paper we obtain particular and unique solutions of the DGLAP evolution 

equations for sea and valence quark structure functions in LO to obtain t and x-evolutions of those structure functions. 

These LO results are compared with a recent global parameterization [8]. Here section 1, section 2, and section 3 will give 

the introduction, the necessary theory and the results and discussion respectively. 

2.     THEORY 

The DGLAP evolution equations for sea and valence quark structure functions in the standard forms are [9]  
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where   F2
s
(x, Q

2
) = xus  or xds  or xss, F2

v
(x, Q

2
) = xuv or xdv and 
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4/(33-2Nf), Nf being the number of flavours and Λ is the QCD cut off parameter. 

Eqs (1) and (2) become, 

 
         0,2,1,

2
1ln43

,
2















txsItxsItxsFx
t

fA

t

txsF
            (3) 

and 

 
       ,0,,21ln43

,2 




 




txI vtxvFx

t

fA

t

txvF              (4) 

where              

      ,,22,/2
21   

1

w-1

dw
2,1I  














  txsFtwxsFw

x

txs                 (5) 

     dwtwxGtxI ,/
1

x

2)w-(12w
4

3
,s

2                 (6)   

and 

      . t,xvFt,w/xvFw1    
1

x
w-1

dw
t,xI

v
 















 

2
2

2
22                   (7) 

Using Taylor expansion method [10] and neglecting higher order terms of x as discussed in our earlier works [1-3, 11-12],

)t,w/x(G  can be approximated for low-x as 
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Similarly, F2
s
(x / w, t) and F2

v
(x / w, t) can be approximated for small-x as 
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        Using equations (8), (9) and (10) in equations (5), (6) and (7) and performing u-integrations we get 
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Now using equations (11) and (12) in equation (1) we have, 

 
 

 
 

 
 

.0
,

)(,)(
,2)(,2)(

,2 




























x

txG
xDtxGxC

x

txsF
xBtxsFxA

t

fA

t

txF s
                  (14)  

Let us assume for simplicity, 

G(x, t) = K(x) F2
s
 (x, t),                          (15) 

where K(x) is a function of x. Now equation (14) gives 
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where  

A(x)= 3+ 4 ln(1-x)-(1-x)(3+ x),    B(x) = x (1-x
2
) + 2x ln(1/ x),    C(x) = 1/ 4 (1-x)( 2-x+ 2x

2
), 

D(x) = x [-1/ 4(1-x)(5-4x+ 2x
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and    M(x) = B(x)+ K(x)D(x). 

Secondly, using equation (13) in equation (2) we have  
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where  P(x) = 3+ 4 ln(1-x)-(1-x)(x+ 3)  and  Q(x) = x(1-x
2
)-2x lnx. The general solutions of equations (16) is [13-14] F (U, 

V) = 0, where F is an arbitrary function and U(x, t, F2) = C1 and V(x, t, F2) = C2 form a solution of equation                                                                                                                                           
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Solving equation (20) we obtain, 
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If U and V are two independent solutions of equation (18) and if α and β are arbitrary constants, then V= αU+ β may be 

taken as a complete solution of equation (16). We take this form as this is the simplest form of a complete solution which 

contains both the arbitrary constants α and β. Now the complete solution [13-14] 
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is a two-parameter family of surfaces. The one parameter family determined by taking β = α
2
 has equation                      
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Differentiating equation (20) with respect to α, we get 
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which is merely a particular solution of the general solution. Now, defining  
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which gives the t-evolution of light sea quark structure function F2
s
(x, t). 

Proceeding exactly in the same way, and defining   ,
)(

)(

)(

2
exp2

04

1
0,2 




























 dx

xQ

xP

xQfA
ttxvF

 we get for valence 

quark structure function                                                                  
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which gives the t-evolution of valence quark structure function F2
v
(x, t).  
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which gives the x-evolution of light sea quark function F2
s
(x, t). Similarly defining, 
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 which gives the x-evolution of valence quark  structure function F2
v
(x, t).  

             For the complete solution of equation (16), we take β = α
2
 in equation (19). If we take β = α in equation (19) and 

differentiating with respect to α as before, we get  
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  we get,  
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Proceeding exactly in the same way we get for valence quark structure function also   
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 which gives the t-evolution of valence quark structure function F2
v
(x, t). 

Proceeding in the same way we get x- evolutions of light sea and valence quark structure functions as 
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Proceeding exactly in the same way we can show that if we take β = α
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and so on. So in general, if we take β = α
y
, we get 
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 which our t and x-evolutions respectively of light sea and valence 

quark structure functions for β = α
y
. We observe if y→∞ (very large), y/(y-1) →1. 

Thus we observe that if we take β = α in equation (19) we cannot obtain the value of α and also the required solution. But 

if we take β = α
2
, α

3
, α

4
, α

5
….. and so on, we see that the powers of (t/t0) in t-evolutions and the numerators of the first 

term inside the integral for x- evolutions of valence and light sea quark  structure functions are 2, 3/2, 4/3, 5/4….and so on 

respectively as discussed above. Thus we see that if in the relation β = α
y
, y varies between 2 to a maximum value, the 

powers of (t/t0) varies between 2 to 1, and the numerator of the first term in the integral sign varies between 2 to 1. Then it 

is understood that the solutions of equations (16) and (17) obtained by this methodology are not unique and so the t-

evolutions and x-evolution of valence and light sea quark structure function obtained by this methodology are not unique. 

Thus by this methodology, instead of having a single solution we arrive a band of solutions, of course the range for these 

solutions is reasonably narrow.    

Again due to conservation of the electromagnetic current, F2 must vanish as Q
2
 goes to zero [15, 16]. Also R→0 in this 

limit. Here R indicates ratio of longitudinal and transverse cross-sections of virtual photon in DIS process.  This implies 

that scaling should not be a valid concept in the region of very low Q
2
. The exchanged photon is then almost real and the 

close similarity of real photonic and hadronic interactions justifies the use of the Vector Meson Dominance (VMD) 

concept [17-18] for the description of F2. In the language of perturbation theory this concept is equivalent to a statement 

that a physical photon spends part of its time as a “bare”, point-like photon and part as a virtual hadron (s) [16]. The 

power and beauty of explaining scaling violations with field theoretic methods (i.e., radiative corrections in QCD) 

remains, however, unchallenged in as much as they provide us with a framework for the whole x-region with essentially 

only one free parameter Λ [19].   For Q
2 

values much larger than Λ
2
, the effective coupling is small and a perturbative 

description in terms of quarks and gluons interacting weakly makes sense. For Q
2
 of order Λ

2
, the effective coupling is 

infinite and we cannot make such a picture, since quarks and gluons will arrange themselves into strongly bound clusters, 

namely, hadrons [15] and so the perturbation series breaks down at small-Q
2
 [15, 20]. Thus, it can be thought of Λ as 

marking the boundary between a world of quasi-free quarks and gluons, and the world of pions, protons, and so on. The 

value of Λ is not predicted by the theory; it is a free parameter to be determined from experiment. It should expect that it 

is of the order of a typical hadronic mass [15]. Since the value of Λ is so small we assume at Q = Λ, F2
S
(x, t) = 0 due to 

conservation of the electromagnetic current [15-16]. This dynamical prediction agrees with most ad hoc parameterizations 

and with the data [19]. Using this boundary condition in equation (19) we get β = 0 and   
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which gives the t-evolutions of light sea quark structure function in LO. Again defining,           
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which gives the x-evolutions of light sea quark structure functions in LO. Similarly we get for valence quark  
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 We observed that unique solutions (equations (27), (28), (29) and (30)) of DGLAP evolution equations for valence and 

light sea quark structure functions are same with particular solutions for y maximum in β = α
y
 relation in LO.  

3.     RESULTS AND DISCUSSION 

In the present paper, we present our result of t-evolution of valence and light sea quark structure functions qualitatively 

and compare result of x-evolution with a recent global parameterization [8]. These parameterizations include data from 

H1, ZEUS, DO, CDF data. Though we present our results of t-evolution with y = 2 and y = maximum in β = α
y
 relation 

our result with y = maximum is equivalent to that of unique solution and results of x-evolution for y = 2 and y = maximum 

in β = α
y
 relation have not any significant difference. 

In fig.1 (a-c) we present our results of t-evolutions of light sea and valence quark structure functions qualitatively for the 

representative values of x given in the figures for y = 2 (solid lines) and y maximum (dashed lines) in β = α
y
 relation. We 

have taken arbitrary inputs from recent global parameterizations MRST2001 [8] at Q0
2
= 1 GeV

2
. It is clear from figures 

that t-evolutions of valence and light sea quark structure functions depend upon input F
s
(x, t0) and F

v
(x, t0) values. Unique 

solutions of t- evolution for light sea and valence quark structure functions are same with particular solutions for y 

maximum in β = α
y
 relation in LO.  

For a quantitative analysis of x-distributions of light sea quark structure functions, we calculate the integrals that occurred 

in equation (24) for Nf = 4. In figure 2 (a-b), we present our results of x-distribution of light sea quark structure functions 

for K(x) = constant for representative values of Q
2
 = 10 GeV

2
 (figure 2(a)) and Q

2
 = 10 GeV

2
 (figure 2(b)) and compare 

them with recent global parameterizations (thin solid lines) [8] in the relation β=α
y
 for y =2 (thick solid lines). Since our 

theory is in small-x region and does not explain the peak portion for u & d,  so in each the data point for x- value just 

below 0.1 for s and 0.01 for u & d has been taken as input to test the evolution equation (24). We observed that agreement 

of the results (thick solid line) with parameterization is found to be good at K(x) = 60, 590 for u & d and K(x) = 210, 520 

for s in figure 2(a) and figure 2(b) respectively. In the same figures we present the sensitivity of our results (dashed lines) 

for different constant values of K(x). We observe that if value of K(x) is increased or decreased, the curve goes upward or 

downward direction respectively. But the nature of the curve is similar. 
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In figures 3 (a-b) and 4(a-b) we present our results of x-distribution of light sea quark structure functions for K(x) = ax
b
, 

where „a‟ and „b‟ are constants for representative values of Q
2
 = 10 GeV

2
 (figure 3(a-b)) and Q

2
 = 10 GeV

2
 (figure 4(a-b)) 

and compare them with recent global parameterizations (thin solid lines) [10] in the relation β=α
y
 for y = 2 (thick solid 

lines). Since  our theory is in small-x region and does not explain the peak portion for u & d, so in each the data point for 

x-value just below 0.1 for s and 0.01 for u & d has been taken as input to test the evolution equation (24). We observed 

that agreement of the results (thick solid line) with parameterization is found to be good at a = 135 & b = 0.33 for u & d 

and a = 130 & b = 0.35 for s at Q
2
 = 10 GeV

2
 in figure 3(a-b) and a = 211 & b = 0.25 for u & d and a = 260 & b = 0.29 

for s at Q
2
 = 10

4
 GeV

2
 in figure 4(a-b).  In the same figures we present the sensitivity of our results (dashed lines) for 

different values of „a‟ and „b‟. Here we take b = 0.33, 0.35 in figure 3(a) and b = 0.25, 0.29 in figure 4(a). We observe that 

if value of „a‟ is increased or decreased, the curve goes upward or downward direction. But the nature of the curve is 

similar. 

 

Fig. 1(a-c): Results of t-evolutions of light sea and valence quark structure functions qualitatively for the 

representative values of x given in the figures for y = 2 (solid lines) and y maximum (dashed lines) in β = α
y
 relation. 

We have taken arbitrary inputs from recent global parameterizations MRST2001 [8] at Q0
2
= 1 GeV

2
. For 

convenience, value of each data point is increased by adding 4, 5, 6, 7 for x = 0.0001, 0.001, 0.01, 0.1 respectively.      
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Fig. 2(a-b): Results of x-distribution of light sea quark structure functions for K(x) = constant for representative 

values of Q
2
 given in each figure, and compare them with recent global parameterizations (thin solid lines) [8] in 

the relation β=α
y
 for y minimum (thick solid lines). In the same figures we present the sensitivity of our results 

(dashed lines) for different constant values of K(x). 

In figure 3(b) and figure 4 (b), we present the sensitivity of our results (dashed lines) for different values of „b‟ at fixed 

value of „a‟. Here we take a = 135, 130 in figure 3(b) and a = 211, 260 in figure 4(b). We observe that at b = 0.33 & 0.35, 

agreement of the results (thick solid lines) with parameterizations data is found to be good in figure 3(b) and at b = 0.25 & 

0.29, agreement of the results (thick solid lines) with parameterizations data is found to be excellent in figure 4(b). If 

value of „b‟ is increased or decreased the curve goes downward or upward direction. But the nature of the curve is similar. 

In figures 5(a-b) and 6(a-b) we present our results of x-distribution of light sea quark structure functions for K(x) = ce
-dx

, 

where „c‟ and„d‟ are constants for representative values of Q
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 = 10 GeV

2
 (figure 5(a-b)) and Q
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2
 (figure 6(a-b)) 

and compare them with recent global parameterizations (thin solid lines) [8] in the relation β=α
y
 for y = 2 (thick solid 

lines). Since our theory is in small-x region and does not explain the peak portion for u & d, so in each the data point for 

x-value just below 0.1 for s and 0.01 for u & d has been taken as input to test the evolution equation (24).  We observed 

that agreement of 
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Fig. 3(a-b): Results of x-distribution of light sea quark structure functions for K(x) = axb, where ‘a’ and ‘b’ are constants for Q2 

= 10 GeV2 and compare them with recent global parameterizations (thin solid lines) [8] in the relation β=αy for y minimum 

(thick solid lines). In the same figures we present the sensitivity of our results (dashed lines) for different values of ‘a’ and ‘b’.  

The results (thick solid line) with parameterization is found to be good at c = 47.8 & d = -1 for u ,d and  c  =32.5 & d=-20 for s at 

Q2 =10 GeV2 in figs.5(a-b) and c=465 & d=-.4 for u ,d and  c=385 & d = - 25 

 

      

Fig. 4(a-b): Results of x-distribution of light sea quark structure functions for K(x) = axb, where ‘a’ and ‘b’ are constants for Q2 

= 104 GeV2 and compare them with recent global parameterizations (thin solid lines) [10] in the relation β=αy for y minimum 

(thick solid lines). In the same figures we present the sensitivity of our results (dashed lines) for different values of ‘a’ and ‘b’.         
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for s at Q
2
 = 10

4
 GeV

2
 in figs. 6(a-b).  In the same figures we present the sensitivity of our results (by dashed lines) for 

different values of „c‟ and„d‟. Here we take d = -1, -20 in figure 5(a) and d = -.4, -25 in figure 6(a). We observe that if 

value of „c‟ is increased or decreased, the curve goes upward or downward direction. But the nature of the curve is 

similar. 

 

Fig. 5(a-b): Results of x-distribution of light sea quark structure functions for K(x) = ce
-dx

, where ‘c’ and ‘d’ are 

constants for Q
2
 = 10 GeV

2
, and compare them with recent global parameterizations (thin solid lines) [8] in the 

relation β=α
y
 for y minimum (thick solid lines). In the same figures we present the sensitivity of our results (dashed 

lines) for different values of ‘c’ and‘d’.  

In figure 5(b) and figure 6 (b), we present the sensitivity of our results (dashed lines) for different values of„d‟ at fixed  

value of „c‟. Here we take c = 47.8, 32.5 in figure 5(b) and c = 465, 385 in figure 4(b). We observe that at d = -1, & -20, 

agreement of the results (thick solid lines) with parameterizations data is found to be good in figure 5(b) and at d = -.4 & -

25, agreement of the results (thick solid lines) with parameterizations data is found to be excellent in figure 6(b). If value 

of„d‟ is increased or decreased the curve goes upward or downward direction. But the nature of the curve is similar.  

We observed that for x- evolutions of light sea quark structure functions, results for y minimum and maximum in β = α
y
 

relation in LO have not any significance difference.  

It is to be noted that unique solutions evolution equations for valence and light sea quark structure functions are same with 

particular solutions for y maximum in β = α
y
 relation in LO.  
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Fig. 6(a-b): Results of x-distribution of light sea quark structure functions for K(x) = ce
-dx

, where ‘c’ and‘d’ are 

constants for Q
2
 = 10

4
 GeV

2
, and compare them with recent global parameterizations (thin solid lines) [8] in the 

relation β=α
y
 for y minimum (thick solid lines). In the same figures we present the sensitivity of our results (dashed 

lines) for different values of ‘c’ and ‘d’.   

4.   CONCLUSIONS 

From our above discussion, it has been observed that though we can derive a complete unique t-evolution for valence and 

light sea quark structure functions in LO, yet we can not establish a complete unique x-evolution for light sea quark 

function in LO. K(x) is the relation between light sea quark and gluon structure functions may be in the forms of a 

constant, an exponential function of x or a power in x and they can equally produce required x-distribution of light sea 

quark. But unlike many parameter arbitrary input x-distribution functions generally used in the literature, our method 

required only one or two such parameter. On the other hand, the explicit form of K(x) can actually be obtained only by 

solving coupled DGLAP evolution equations for singlet and gluon structure functions, and works are going on in this 

regard. 
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